We study the problem of unlearning datapoints from a learnt model. The learner first receives a dataset $S$ drawn i.i.d. from an unknown distribution, and outputs a model $\widehat{w}$ that performs well on unseen samples from the same distribution. However, at some point in the future, any training datapoint $z \in S$ can request to be unlearned, thus prompting the learner to modify its output model while still ensuring the same accuracy guarantees. We initiate a rigorous study of generalization in machine unlearning, where the goal is to perform well on previously unseen datapoints. Our focus is on both computational and storage complexity. For the setting of convex losses, we provide an unlearning algorithm that can unlearn up to $O(n/d^{1/4})$ samples, where $d$ is the problem dimension. In comparison, in general, differentially private learning (which implies unlearning) only guarantees deletion of $O(n/d^{1/2})$ samples. This demonstrates a novel separation between differential privacy and machine unlearning.


翻译:学习者首先从未知的分布中获得一套数据集,即从未知的分布中抽取的美元,然后输出出一种模型,即用同一分布中未见的样本来很好地表现。然而,在将来的某个时候,任何培训数据点$z/in S$可以要求不吸取,从而促使学习者修改其产出模式,同时仍然确保同样的准确性保障。我们开始对机器不学习中的概括化进行严格研究,目的是在先前的未知数据点上取得良好效果。我们的重点是计算和存储复杂性。对于确定 convex损失,我们提供了一种可以解析到$O(n/d ⁇ 1/4})的未学习算法,其中美元是问题层面。相比之下,一般而言,差异性私人学习(这意味着不学习)只能保证删除$O(n/d ⁇ 1/2}样本。这显示了差异性隐私和机器不学习之间的新区分。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
10+阅读 · 2017年12月29日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员