This paper provides three nearly-optimal algorithms for scheduling $t$ jobs in the $\mathsf{CLIQUE}$ model. First, we present a deterministic scheduling algorithm that runs in $O(\mathsf{GlobalCongestion} + \mathsf{dilation})$ rounds for jobs that are sufficiently efficient in terms of their memory. The $\mathsf{dilation}$ is the maximum round complexity of any of the given jobs, and the $\mathsf{GlobalCongestion}$ is the total number of messages in all jobs divided by the per-round bandwidth of $n^2$ of the $\mathsf{CLIQUE}$ model. Both are inherent lower bounds for any scheduling algorithm. Then, we present a randomized scheduling algorithm which runs $t$ jobs in $O(\mathsf{GlobalCongestion} + \mathsf{dilation}\cdot\log{n}+t)$ rounds and only requires that inputs and outputs do not exceed $O(n\log n)$ bits per node, which is met by, e.g., almost all graph problems. Lastly, we adjust the \emph{random-delay-based} scheduling algorithm [Ghaffari, PODC'15] from the $\mathsf{CLIQUE}$ model and obtain an algorithm that schedules any $t$ jobs in $O(t / n + \mathsf{LocalCongestion} + \mathsf{dilation}\cdot\log{n})$ rounds, where the $\mathsf{LocalCongestion}$ relates to the congestion at a single node of the $\mathsf{CLIQUE}$. We compare this algorithm to the previous approaches and show their benefit. We schedule the set of jobs on-the-fly, without a priori knowledge of its parameters or the communication patterns of the jobs. In light of the inherent lower bounds, all of our algorithms are nearly-optimal. We exemplify the power of our algorithms by analyzing the message complexity of the state-of-the-art MIS protocol [Ghaffari, Gouleakis, Konrad, Mitrovic and Rubinfeld, PODC'18], and we show that we can solve $t$ instances of MIS in $O(t + \log\log\Delta\log{n})$ rounds, that is, in $O(1)$ amortized time, for $t\geq \log\log\Delta\log{n}$.
翻译:本文为 $\ mathsf{ cLIQUE} 模式中的 $ 提供了三种接近最佳的算法 。 首先, 我们展示了一种以$( mathsf{ GlobalCcommess} +\ mathsf{ dicals} 美元运行的确定性排程算法, 而对于在记忆中足够高效的工作来说, $( mathsf{ gela} 美元是任何一个指定工作的最大轮数 ; $( mathsffsf} 全球考量} 美元是所有任务中的确定性信息总数, 由 $( mathfsformus) 的每个参数除以 $( gn) 2美元 的计算。 然后, 我们提供了一个随机的调度算法算法 $( may) 。