Distributed computing systems often need to consider the scheduling problem involving a collection of highly dependent data-processing tasks that must work in concert to achieve mission-critical objectives. This paper considers the unrelated machine scheduling problem for minimizing weighted sum completion time under arbitrary precedence constraints and on heterogeneous machines with different processing speeds. The problem is known to be strongly NP-hard even in the single machine setting. By making use of Queyranne's constraint set and constructing a novel Linear Programming relaxation for the scheduling problem under arbitrary precedence constraints, our results in this paper advance the state of the art. We develop a $2(1+(m-1)/D)$-approximation algorithm (and $2(1+(m-1)/D)+1$-approximation) for the scheduling problem with zero release time (and arbitrary release time), where $m$ is the number of servers and $D$ is the task-skewness product. The algorithm can be efficiently computed in polynomial time using the Ellipsoid method and achieves nearly optimal performance in practice as $D>O(m)$ when the number of tasks per job to schedule is sufficiently larger than the number of machines available. Our implementation and evaluation using a heterogeneous testbed and real-world benchmarks confirms significant improvement in weighted sum completion time for dependent computing tasks.
翻译:分散的计算系统往往需要考虑涉及高度依赖性极强的数据处理任务集成的时间安排问题,这些任务必须协同工作,以实现任务的关键目标。本文件审议了在任意的优先限制下将加权和完成时间减少到最低限度以及处理速度不同的混合机器上无关的机器时间安排问题。众所周知,即使在单一的机器环境下,这个问题也是非常硬的NP。通过利用Queyranne的制约设置和在任意的优先限制下为时间安排问题建造新的线性方案编制松绑,我们本文件中的结果可以推进最新技术。我们开发了2(1+(m-1)/D)美元-比例算法(和2(1+(m-1)/D)+1美元-比例算法),用于在零释放时间(和任意发布时间)的情况下尽量减少加权完成时间问题。 利用Ellips类比法方法在多时计算算算算算算算算算,在实践上几乎是最佳的1美元=O美元,因为使用一个比我们大规模升级的升级的模型确定完成比例,而使用一个比我们大规模升级的升级的升级的机器在标准上可以确定一个相当大的任务完成的进度。