Pedestrian path prediction is an essential topic in computer vision and video understanding. Having insight into the movement of pedestrians is crucial for ensuring safe operation in a variety of applications including autonomous vehicles, social robots, and environmental monitoring. Current works in this area utilize complex generative or recurrent methods to capture many possible futures. However, despite the inherent real-time nature of predicting future paths, little work has been done to explore accurate and computationally efficient approaches for this task. To this end, we propose a convolutional approach for real-time pedestrian path prediction, CARPe. It utilizes a variation of Graph Isomorphism Networks in combination with an agile convolutional neural network design to form a fast and accurate path prediction approach. Notable results in both inference speed and prediction accuracy are achieved, improving FPS considerably in comparison to current state-of-the-art methods while delivering competitive accuracy on well-known path prediction datasets.
翻译:Pedestrian路径预测是计算机视觉和视频理解中的一个基本主题。 深入了解行人移动对于确保安全操作各种应用,包括自主车辆、社会机器人和环境监测,至关重要。 目前这一领域的工程使用复杂的基因化或经常性方法来捕捉许多可能的未来。 然而,尽管预测未来路径具有内在的实时性质,但在探索准确和计算高效的方法以完成这项任务方面没有做多少工作。 为此,我们提议了实时行人路径预测的渐进式方法,即CARPE。它利用图表形态网络的变异,结合灵活的进化神经网络设计来形成快速和准确的路径预测方法。在推断速度和预测准确性两方面都取得了显著成果,与目前最先进的方法相比,大大改进了FPS,同时对众所周知的路径预测数据集提供了有竞争力的准确性。