In this paper we show a deterministic parallel all-pairs shortest paths algorithm for real-weighted directed graphs. The algorithm has $\tilde{O}(nm+(n/d)^3)$ work and $\tilde{O}(d)$ depth for any depth parameter $d\in [1,n]$. To the best of our knowledge, such a trade-off has only been previously described for the real-weighted single-source shortest paths problem using randomization [Bringmann et al., ICALP'17]. Moreover, our result improves upon the parallelism of the state-of-the-art randomized parallel algorithm for computing transitive closure, which has $\tilde{O}(nm+n^3/d^2)$ work and $\tilde{O}(d)$ depth [Ullman and Yannakakis, SIAM J. Comput. '91]. Our APSP algorithm turns out to be a powerful tool for designing efficient planar graph algorithms in both parallel and sequential regimes. One notable ingredient of our parallel APSP algorithm is a simple deterministic $\tilde{O}(nm)$-work $\tilde{O}(d)$-depth procedure for computing $\tilde{O}(n/d)$-size hitting sets of shortest $d$-hop paths between all pairs of vertices of a real-weighted digraph. Such hitting sets have also been called $d$-hub sets. Hub sets have previously proved especially useful in designing parallel or dynamic shortest paths algorithms and are typically obtained via random sampling. Our procedure implies, for example, an $\tilde{O}(nm)$-time deterministic algorithm for finding a shortest negative cycle of a real-weighted digraph. Such a near-optimal bound for this problem has been so far only achieved using a randomized algorithm [Orlin et al., Discret. Appl. Math. '18].
翻译:在本文中, 我们展示了一种确定性平行所有 pair 最短路径算法, 用于真正加权的图表。 此外, 算法有 $\ tilde{ O} (n+ (n/ d) 3) 工作 和 $\ tilde{ O} (d) 任何深度参数的深度 $d\ $[ 1 美元] (d) (d) 美元 。 据我们所知, 这种交易只是用随机化来描述真实加权的单一来源最短路径问题 [Bringmann etalrial. decalP'17] 。 此外, 算法的数学- tal- dilent 的平行路径的平行路径(n) (n+ (n) (n) d) (n d) (n- d) (n- dild) 计算过渡关闭时, 我们的 AS- directrial- deal ral ral ral ral. a mill. frode a frode ex- deal- developmental. a proal_ a messal_ a messal_ a messal_ a messal_ a messal_ a mess a messal_ a messal_ a messal_ a messal_ a exal_ exal_ exal_ a exal_ exal_ exal_ exal_ latal___ exal_ lad a a exal_ a extal_ a latal_ a exal_ a exal_ lad a a a a a a a a ex____ a a a a a a a a a a a a a a a a exal_ exald pald pald pald a exald a pald a ex_ a ladaldald a exal_ ex_ ex a a a a a a a a a a a a a ex a lad a lad a exal_ exal_ exal_ exal_ exal_ exal_ ex ex a fal_ ex a