It is now widely accepted that the standard inferential toolkit used by the scientific research community -- null-hypothesis significance testing (NHST) -- is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches. This lack of consensus reflects long-standing issues concerning Bayesian methods, the principal alternative to NHST. We report on recent work that builds on an approach to inference put forward over 70 years ago to address the well-known "Problem of Priors" in Bayesian analysis, by reversing the conventional prior-likelihood-posterior ("forward") use of Bayes's Theorem. Such Reverse-Bayes analysis allows priors to be deduced from the likelihood by requiring that the posterior achieve a specified level of credibility. We summarise the technical underpinning of this approach, and show how it opens up new approaches to common inferential challenges, such as assessing the credibility of scientific findings, setting them in appropriate context, estimating the probability of successful replications, and extracting more insight from NHST while reducing the risk of misinterpretation. We argue that Reverse-Bayes methods have a key role to play in making Bayesian methods more accessible and attractive to the scientific community. As a running example we consider a recently published meta-analysis from several randomized controlled clinical trials investigating the association between corticosteroids and mortality in hospitalized patients with COVID-19.
翻译:现在人们普遍认为,科学研究界使用的标准推论工具包 -- -- 纯假意义测试(NHST) -- -- 不符合目的。然而,尽管科学企业面临威胁,但还没有就替代方法达成一致。这种缺乏共识的情况反映了巴耶斯方法的长期问题,这是NHST的主要替代方法。我们报告了最近的工作,这种工作建立在70多年前提出的推论方法的基础上,目的是解决巴伊西亚分析中众所周知的“前科问题”问题,方法是扭转传统的巴伊斯先类前科(“前科-前科-前科)使用Bayes的理论。这种逆向-Bayes分析使得能够从可能性中推断出前科方法,要求后科方法达到一定的可信度。我们总结了这一方法的技术基础,并表明它如何为常见的推论挑战开辟新的方法,例如评估科学发现的信誉,在适当的背景下确定这些结果的可靠性,评估成功复制的可能性,以及从NHST-19病人的理论前科前科(“前前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科)的使用方法(“前科-前科-前科-前科-前科-前科-前科-前科-前科)的使用方法)的使用方法(NHNHNHNHST-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科)的使用)的使用方法)的使用方法(NH)的使用方法。这种试验-前科-前科-前科-前科-前科-前科-前科-前科-前科-前科)的使用方法的测试-前科)的使用方法,但代-前科-前科-前科-前科-前科-前科)的使用方法的使用方法的使用方法的使用方法的使用方法,尽管受到威胁,尽管受到威胁,但后科-后科-后