This paper investigates how global decision problems over arithmetically represented domains acquire reflective structure through class-quantification. Arithmetization forces diagonal fixed points whose verification requires reflection beyond finitary means, producing Feferman-style obstructions independent of computational technique. We use this mechanism to analyze uniform complexity statements, including $\mathsf{P}$ vs. $\mathsf{NP}$, showing that their difficulty stems from structural impredicativity rather than methodological limitations. The focus is not on deriving separations but on clarifying the logical status of such arithmetized assertions.
翻译:本文研究算术表示域上的全局决策问题如何通过类量化获得自反结构。算术化迫使出现对角线不动点,其验证需要超越有限手段的自反,从而产生独立于计算技术的费弗曼式障碍。我们利用这一机制分析包括$\mathsf{P}$与$\mathsf{NP}$问题在内的一致性复杂度陈述,表明其困难源于结构上的非直谓性而非方法论局限。重点不在于推导分离结果,而在于阐明此类算术化断言在逻辑上的地位。