Nowadays, colleges and universities use predictive analytics in a variety of ways to increase student success rates. Despite the potentials for predictive analytics, there exist two major barriers to their adoption in higher education: (a) the lack of democratization in deployment, and (b) the potential to exacerbate inequalities. Education researchers and policymakers encounter numerous challenges in deploying predictive modeling in practice. These challenges present in different steps of modeling including data preparation, model development, and evaluation. Nevertheless, each of these steps can introduce additional bias to the system if not appropriately performed. Most large-scale and nationally representative education data sets suffer from a significant number of incomplete responses from the research participants. Missing Values are the frequent latent causes behind many data analysis challenges. While many education-related studies addressed the challenges of missing data, little is known about the impact of handling missing values on the fairness of predictive outcomes in practice. In this paper, we set out to first assess the disparities in predictive modeling outcome for college-student success, then investigate the impact of imputation techniques on the model performance and fairness using a comprehensive set of common metrics. The comprehensive analysis of a real large-scale education dataset reveals key insights on the modeling disparity and how different imputation techniques fundamentally compare to one another in terms of their impact on the fairness of the student-success predictive outcome.


翻译:目前,大专院校以多种方式使用预测分析方法提高学生成功率。尽管预测分析有潜力,但在高等教育中采用这种分析存在两大障碍:(a) 部署方面缺乏民主化,以及(b) 不平等加剧的可能性。教育研究人员和决策者在实际运用预测模型时遇到许多挑战。在包括数据编制、模型开发和评价在内的不同建模步骤中出现的这些挑战。然而,这些步骤中的每一步骤都可能给系统带来更多的偏差。大多数大型和具有国家代表性的教育数据集都受到研究参与者大量不完整的反馈的影响。缺失值是许多数据分析挑战背后的常见潜在原因。虽然许多与教育有关的研究解决了缺失数据的挑战,但对于处理缺失值对实践中预测结果的公平性的影响却知之甚少。在本文中,我们首先评估了大学成功预测模型结果的预测性差异,然后利用一套综合通用指标来调查建模对模型业绩和公平性的影响。缺乏价值是许多数据分析挑战背后的常见潜在潜在潜在潜在原因。全面分析对学生结果的另一种重大差异。

0
下载
关闭预览

相关内容

经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
4+阅读 · 2018年4月11日
VIP会员
相关VIP内容
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员