Brain-computer interfaces (BCIs) use brain signals such as electroencephalography to reflect user intention and enable two-way communication between computers and users. BCI technology has recently received much attention in healthcare applications, such as neurorehabilitation and diagnosis. BCI applications can also control external devices using only brain activity, which can help people with physical or mental disabilities, especially those suffering from neurological and neuromuscular diseases such as stroke and amyotrophic lateral sclerosis. Motor imagery (MI) has been widely used for BCI-based device control, but we adopted intuitive visual motion imagery to overcome the weakness of MI. In this study, we developed a three-dimensional (3D) BCI training platform to induce users to imagine upper-limb movements used in real-life activities (picking up a cell phone, pouring water, opening a door, and eating food). We collected intuitive visual motion imagery data and proposed a deep learning network based on functional connectivity as a mind-reading technique. As a result, the proposed network recorded a high classification performance on average (71.05%). Furthermore, we applied the leave-one-subject-out approach to confirm the possibility of improvements in subject-independent classification performance. This study will contribute to the development of BCI-based healthcare applications for rehabilitation, such as robotic arms and wheelchairs, or assist daily life.


翻译:脑-计算机界面(BCI)使用脑电图等脑信号,如脑电图学,以反映用户的意图,并使计算机和用户之间的双向交流成为可能。 BCI技术最近在保健应用中受到很大关注,例如神经康复和诊断。 BCI应用还可以仅使用脑活动控制外部设备,这种活动可以帮助身体或智力残疾者,特别是患有神经和神经肌肉疾病的人,如中风和乳腺横向硬化等疾病的人。MI(MI)已被广泛用于BCI设备控制,但我们采用了直观的视觉动作图像,以克服MI的弱点。在本研究中,我们开发了一个三维(3D) BCI培训平台,以引导用户想象现实生活中使用的上层运动(采集手机、倒水、开门和吃东西)。我们收集了直观视觉图像数据,并提议了一个基于功能连接的深层次学习网络。因此,拟议的网络记录了平均(71.05 % ) 的直观视觉运动图像,以克服MI的弱点。我们开发了一个三维(3D) BCI) BCI培训平台,以引导用户想象在现实活动中使用的升级方法。我们将用左向左位分析方法,从而确认了以进行生命康复。这样进行自我分析。我们作为基础的自我分析。我们将利用的自我分析,将利用了对左位研究。将利用的自我分析,将进行自我分析研究,将利用了以研究。将使用。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
16+阅读 · 2021年3月2日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员