Brain-computer interfaces (BCIs) use brain signals such as electroencephalography to reflect user intention and enable two-way communication between computers and users. BCI technology has recently received much attention in healthcare applications, such as neurorehabilitation and diagnosis. BCI applications can also control external devices using only brain activity, which can help people with physical or mental disabilities, especially those suffering from neurological and neuromuscular diseases such as stroke and amyotrophic lateral sclerosis. Motor imagery (MI) has been widely used for BCI-based device control, but we adopted intuitive visual motion imagery to overcome the weakness of MI. In this study, we developed a three-dimensional (3D) BCI training platform to induce users to imagine upper-limb movements used in real-life activities (picking up a cell phone, pouring water, opening a door, and eating food). We collected intuitive visual motion imagery data and proposed a deep learning network based on functional connectivity as a mind-reading technique. As a result, the proposed network recorded a high classification performance on average (71.05%). Furthermore, we applied the leave-one-subject-out approach to confirm the possibility of improvements in subject-independent classification performance. This study will contribute to the development of BCI-based healthcare applications for rehabilitation, such as robotic arms and wheelchairs, or assist daily life.
翻译:脑-计算机界面(BCI)使用脑电图等脑信号,如脑电图学,以反映用户的意图,并使计算机和用户之间的双向交流成为可能。 BCI技术最近在保健应用中受到很大关注,例如神经康复和诊断。 BCI应用还可以仅使用脑活动控制外部设备,这种活动可以帮助身体或智力残疾者,特别是患有神经和神经肌肉疾病的人,如中风和乳腺横向硬化等疾病的人。MI(MI)已被广泛用于BCI设备控制,但我们采用了直观的视觉动作图像,以克服MI的弱点。在本研究中,我们开发了一个三维(3D) BCI培训平台,以引导用户想象现实生活中使用的上层运动(采集手机、倒水、开门和吃东西)。我们收集了直观视觉图像数据,并提议了一个基于功能连接的深层次学习网络。因此,拟议的网络记录了平均(71.05 % ) 的直观视觉运动图像,以克服MI的弱点。我们开发了一个三维(3D) BCI) BCI培训平台,以引导用户想象在现实活动中使用的升级方法。我们将用左向左位分析方法,从而确认了以进行生命康复。这样进行自我分析。我们作为基础的自我分析。我们将利用的自我分析,将利用了对左位研究。将利用的自我分析,将进行自我分析研究,将利用了以研究。将使用。