The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system can detect zero-day malware without being concerned about mistakenly tagging benign files as malware or enabling disruptive malicious code running as none-malicious ones. This paper investigates different machine learning algorithms to find out how well they can detect zero-day malware. Through the examination of 34 machine/deep learning classifiers, we found that the random forest classifier offered the best accuracy. The paper poses several research questions regarding the performance of machine and deep learning algorithms when detecting zero-day malware with zero rates for false positive and false negative.
翻译:检测零日攻击和脆弱性是一个挑战性的问题。 对于网络管理员来说,最重要的是要非常精确地识别它们。 准确度越高, 防御机制就越强大。 在理想的情景下( 即100%精确度), 系统可以检测零日恶意软件, 而不担心错误地将良性文件标记为恶意软件, 或允许破坏性恶意代码作为无恶意代码运行。 本文调查不同的机器学习算法, 以找出他们能检测到的零日恶意软件有多好。 通过对34个机器/ 深层学习分类师的检查, 我们发现随机森林分类师提供了最佳准确性。 本文提出了若干研究问题, 有关机器和深层学习算法的性能, 当检测出零日恶意软件时, 零日错误的正值和假负值的零率。