Less than 35% of recyclable waste is being actually recycled in the US, which leads to increased soil and sea pollution and is one of the major concerns of environmental researchers as well as the common public. At the heart of the problem are the inefficiencies of the waste sorting process (separating paper, plastic, metal, glass, etc.) due to the extremely complex and cluttered nature of the waste stream. Automated waste detection has great potential to enable more efficient, reliable, and safe waste sorting practices, but it requires label-efficient detection of deformable objects in extremely cluttered scenes. This challenging computer vision task currently lacks suitable datasets or methods in the available literature. In this paper, we take a step towards computer-aided waste detection and present the first in-the-wild industrial-grade waste detection and segmentation dataset, ZeroWaste. This dataset contains over 1800 fully segmented video frames collected from a real waste sorting plant along with waste material labels for training and evaluation of the segmentation methods, as well as over 6000 unlabeled frames that can be further used for semi-supervised and self-supervised learning techniques, as well as frames of the conveyor belt before and after the sorting process, comprising a novel setup that can be used for weakly-supervised segmentation. Our experimental results demonstrate that state-of-the-art segmentation methods struggle to correctly detect and classify target objects which suggests the challenging nature of our proposed real-world task of fine-grained object detection in cluttered scenes. We believe that ZeroWaste will catalyze research in object detection and semantic segmentation in extreme clutter as well as applications in the recycling domain. Our project page can be found at http://ai.bu.edu/zerowaste/.


翻译:不到35%的可回收废物正在美国被实际回收,这导致土壤和海洋污染的增加,也是环境研究人员和普通公众关注的主要问题之一。问题的核心在于废物分类过程(分离纸、塑料、金属、玻璃等)效率低下,原因是废物流极其复杂和杂乱。 自动废物检测极有可能促成更高效、更可靠和安全的废物分类做法, 但它需要贴高标签效率的检测, 以在极其混乱的场景中检测变形物体。 这个具有挑战性的计算机目标目前缺乏合适的数据集或现有文献中采用的方法。 在本文中,我们迈出了一步, 以计算机辅助的废物分类过程( 分离纸、 塑料、 金属、 玻璃等) 。 这个数据集包含1800多个完全分解的视频框架, 从一个真实的废物分类工厂中收集, 以及用于培训和评估分解方法的废渣材料标签, 以及6000多个未标的物体。 在进行实时检测之前,我们可以进一步使用一个精确的缩略的方法, 将一个预测的磁带路段, 用来在预测过程中进行。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
专知会员服务
32+阅读 · 2021年6月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
5+阅读 · 2018年5月22日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员