We give algorithms for sampling several structured logconcave families to high accuracy. We further develop a reduction framework, inspired by proximal point methods in convex optimization, which bootstraps samplers for regularized densities to improve dependences on problem conditioning. A key ingredient in our framework is the notion of a "restricted Gaussian oracle" (RGO) for $g: \mathbb{R}^d \rightarrow \mathbb{R}$, which is a sampler for distributions whose negative log-likelihood sums a quadratic and $g$. By combining our reduction framework with our new samplers, we obtain the following bounds for sampling structured distributions to total variation distance $\epsilon$. For composite densities $\exp(-f(x) - g(x))$, where $f$ has condition number $\kappa$ and convex (but possibly non-smooth) $g$ admits an RGO, we obtain a mixing time of $O(\kappa d \log^3\frac{\kappa d}{\epsilon})$, matching the state-of-the-art non-composite bound; no composite samplers with better mixing than general-purpose logconcave samplers were previously known. For logconcave finite sums $\exp(-F(x))$, where $F(x) = \frac{1}{n}\sum_{i \in [n]} f_i(x)$ has condition number $\kappa$, we give a sampler querying $\widetilde{O}(n + \kappa\max(d, \sqrt{nd}))$ gradient oracles to $\{f_i\}_{i \in [n]}$; no high-accuracy samplers with nontrivial gradient query complexity were previously known. For densities with condition number $\kappa$, we give an algorithm obtaining mixing time $O(\kappa d \log^2\frac{\kappa d}{\epsilon})$, improving the prior state-of-the-art by a logarithmic factor with a significantly simpler analysis; we also show a zeroth-order algorithm attains the same query complexity.


翻译:我们为取样几个结构化对数的对数家族提供算法精准度。 我们进一步开发了一个减少框架, 其灵感来自康韦思优化的准点方法, 用于正常化的密度, 以提高对问题调控的依赖性。 我们框架中的一个关键成分是“ 限制高地或角”( RGO) 概念 $ :\ mathbb{ R\ d\ d\ d\ drob{ R} 美元, 它是一个对负对数的分布的抽样( k), 以正方= 美元; 以正方= 美元= 平方= 美元; 美元= 平面= 美元= 平面 美元= 平面 美元= 美元= 平面 美元= 美元= 平面 美元= 美元= 平面= 美元= 美元= 平面= 美元= 美元= 平面= 美元= 美元= 平面= 美元= 美元= 平面= 美元= 平面= 平面= 美元= 美元= 平面= 平面= 美元= 美元= 平面= 平面= 美元= 平面= 美元= 美元= 美元= 美元= 美元= 平色= 平面= 平色= 平色= 平色=

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
8+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月25日
Arxiv
0+阅读 · 2020年11月24日
Arxiv
0+阅读 · 2020年11月23日
Arxiv
0+阅读 · 2020年11月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
8+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员