Cohesive subgraph mining on attributed graphs is a fundamental problem in graph data analysis. Existing cohesive subgraph mining algorithms on attributed graphs do not consider the fairness of attributes in the subgraph. In this paper, we, for the first time, introduce fairness into the widely-used clique model to mine fairness-aware cohesive subgraphs. In particular, we propose three novel fairness-aware maximal clique models on attributed graphs, called weak fair clique, strong fair clique and relative fair clique, respectively. To enumerate all weak fair cliques, we develop an efficient backtracking algorithm called WFCEnum equipped with a novel colorful k-core based pruning technique. We also propose an efficient enumeration algorithm called SFCEnum to find all strong fair cliques based on a new attribute-alternatively-selection search technique. To further improve the efficiency, we also present several non-trivial ordering techniques for both weak and strong fair clique enumerations. To enumerate all relative fair cliques, we design an enhanced colorful k-core based pruning technique for 2D attribute, and then develop two efficient search algorithms: RFCRefineEnum and RFCAlterEnum based on the ideas of WFCEnum and SFCEnum for arbitrary dimension attribute. The results of extensive experiments on four real-world graphs demonstrate the efficiency, scalability and effectiveness of the proposed algorithms.
翻译:在配给图解上开采可视化图是图解数据分析的一个根本问题。在配给图解上现有的具有凝聚力的亚集采矿算法并不考虑子图中属性的公平性。在本文中,我们第一次将公平性引入广泛使用的分类模型,用于矿藏公平性-能见一致子图。特别是,我们在配给图上提出了三种新的公平性-觉悟最大化最大化最大分类模型,分别称为微弱的公平性、强的公平性以及相对公平的分级。为了列举所有薄弱的公平性格,我们开发了一个高效的回溯算法,称为WFCEENum, 配有新的有色度的KC-C-C-CR, 以找到基于新的属性选择搜索技术的所有强大的公平性分类模型。为了进一步提高效率,我们还提出了几种非三重订购技术,用于弱和强力的公平性平面图解。我们设计了一种更彩色性K-基于新有色的K-CRFC 快速性研究技术,用以展示基于S-CRFC的S-S-S-S-C-CRIal-S-CFC-C-C-C-C-C-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-FAR-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S