This study sought to (1) expand our existing Urban Population Health Observatory (UPHO) system by incorporating a semantics layer; (2) cohesively employ machine learning and semantic/logical inference to provide measurable evidence and detect pathways leading to undesirable health outcomes; (3) provide clinical use case scenarios and design case studies to identify socioenvironmental determinants of health associated with the prevalence of obesity, and (4) design a dashboard that demonstrates the use of UPHO in the context of obesity surveillance using the provided scenarios. The system design includes a knowledge graph generation component that provides contextual knowledge from relevant domains of interest. This system leverages semantics using concepts, properties, and axioms from existing ontologies. In addition, we used the publicly available US Centers for Disease Control and Prevention 500 Cities data set to perform multivariate analysis. A cohesive approach that employs machine learning and semantic/logical inference reveals pathways leading to diseases. In this study, we present 2 clinical case scenarios and a proof-of-concept prototype design of a dashboard that provides warnings, recommendations, and explanations and demonstrates the use of UPHO in the context of obesity surveillance, treatment, and prevention. While exploring the case scenarios using a support vector regression machine learning model, we found that poverty, lack of physical activity, education, and unemployment were the most important predictive variables that contribute to obesity in Memphis, TN. The application of UPHO could help reduce health disparities and improve urban population health. The expanded UPHO feature incorporates an additional level of interpretable knowledge to enhance physicians, researchers, and health officials' informed decision-making at both patient and community levels.
翻译:这项研究力求(1) 通过纳入语义层,扩大我们现有的城市人口健康观察站(UPHO)系统;(2) 一致使用机器学习和语义/逻辑推断,以提供可衡量的证据,并发现导致不良健康结果的途径;(3) 提供临床使用案例假设和设计案例研究,以查明与肥胖流行有关的健康的社会环境决定因素;(4) 设计一个仪表板,展示在使用所提供的假想情况进行肥胖监测时使用UPHO的情况; 系统设计包括一个知识图表生成部分,从相关感兴趣的领域提供背景知识; 该系统利用概念、属性和现有理论的轴心来利用语; 此外,我们利用公开提供的美国疾病控制和预防中心500个城市数据集,进行多变分析; 采用机学和语义/语义/推理分析,以显示肥胖导致疾病的途径; 我们提出两个临床假设情景,以及一个提供警告、建议、解释和演示使用UPHO系统在肥胖症监测、治疗、治疗和预防方面的应用; 我们利用机理学模型, 改进了对城市病理学、 数据分析的变变,我们利用了一种重要的病理学变模型, 改进了城市病理学, 改进了城市病理学, 改进了城市病理学活动, 改进了城市病理学, 改进了城市病理学变, 改进了城市病理学变, 改进了我们学习了健康变变,增加了研究 改进了研究 改进了健康变变,增加了了健康变,增加了了健康变,增加了了健康变,增加了了健康变,增加了了健康变。