Approximate Simultaneous Diagonalization (ASD) is a problem to find a common similarity transformation which approximately diagonalizes a given square-matrix tuple. Many data science problems have been reduced into ASD through ingenious modelling. For ASD, the so-called Jacobi-like methods have been extensively used. However, the methods have no guarantee to suppress the magnitude of off-diagonal entries of the transformed tuple even if the given tuple has a common exact diagonalizer, i.e., the given tuple is simultaneously diagonalizable. In this paper, to establish an alternative powerful strategy for ASD, we present a novel two-step strategy, called Approximate-Then-Diagonalize-Simultaneously (ATDS) algorithm. The ATDS algorithm decomposes ASD into (Step 1) finding a simultaneously diagonalizable tuple near the given one; and (Step 2) finding a common similarity transformation which diagonalizes exactly the tuple obtained in Step 1. The proposed approach to Step 1 is realized by solving a Structured Low-Rank Approximation (SLRA) with Cadzow's algorithm. In Step 2, by exploiting the idea in the constructive proof regarding the conditions for the exact simultaneous diagonalizability, we obtain a common exact diagonalizer of the obtained tuple in Step 1 as a solution for the original ASD. Unlike the Jacobi-like methods, the ATDS algorithm has a guarantee to find a common exact diagonalizer if the given tuple happens to be simultaneously diagonalizable. Numerical experiments show that the ATDS algorithm achieves better performance than the Jacobi-like methods.


翻译:近似相似的 Smultaine Diagonal化( ASD) 是一个问题, 无法找到一个共同相似的变法, 使给定的正方形图象化化。 许多数据科学问题已经通过巧妙的建模被缩小为 ASD 。 对于ASD, 所谓的“ 雅各” 方法已被广泛使用。 然而, 这种方法并不能保证抑制变形图象的离外直角条目的大小, 即使给定的图象具有一个共同的精确对等分解仪, 也就是说, 给定的图象会同时被分解 。 在本文中, 要为 ASDS 建立一个替代的强大战略, 我们提出一个新的两步战略, 叫做“ 近于时对立- 双向- 双向( ATDS) 算法。 ATDS 算法将 Asadablen- digental 找到一个与给定的正向正向直方形变的正方形变法。, 如果给定的正向正向后, 的对正方形变正方形变正方形的亚 方法, 将Star- divalmagododal dival 实现了 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
250+阅读 · 2020年5月18日
专知会员服务
62+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月1日
Approximate Cross-Validation for Structured Models
Arxiv
0+阅读 · 2020年12月1日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月1日
Top
微信扫码咨询专知VIP会员