Super resolution offers a way to harness medium even lowresolution but historically valuable remote sensing image archives. Generative models, especially diffusion models, have recently been applied to remote sensing super resolution (RSSR), yet several challenges exist. First, diffusion models are effective but require expensive training from scratch resources and have slow inference speeds. Second, current methods have limited utilization of auxiliary information as real-world constraints to reconstruct scientifically realistic images. Finally, most current methods lack evaluation on downstream tasks. In this study, we present a efficient LSSR framework for RSSR, supported by a new multimodal dataset of paired 30 m Landsat 8 and 10 m Sentinel 2 imagery. Built on frozen pretrained Stable Diffusion, LSSR integrates crossmodal attention with auxiliary knowledge (Digital Elevation Model, land cover, month) and Synthetic Aperture Radar guidance, enhanced by adapters and a tailored Fourier NDVI loss to balance spatial details and spectral fidelity. Extensive experiments demonstrate that LSSR significantly improves crop boundary delineation and recovery, achieving state-of-the-art performance with Peak Signal-to-Noise Ratio/Structural Similarity Index Measure of 32.63/0.84 (RGB) and 23.99/0.78 (IR), and the lowest NDVI Mean Squared Error (0.042), while maintaining efficient inference (0.39 sec/image). Moreover, LSSR transfers effectively to NASA Harmonized Landsat and Sentinel (HLS) super resolution, yielding more reliable crop classification (F1: 0.86) than Sentinel-2 (F1: 0.85). These results highlight the potential of RSSR to advance precision agriculture.
翻译:超分辨率技术为利用中等乃至低分辨率但具有历史价值的遥感影像档案提供了途径。生成模型,特别是扩散模型,最近已被应用于遥感超分辨率(RSSR),但仍面临若干挑战。首先,扩散模型虽有效,但需要昂贵的从头训练资源且推理速度缓慢。其次,现有方法对辅助信息作为现实约束的利用有限,难以重建科学上真实的图像。最后,当前大多数方法缺乏对下游任务的评估。本研究提出了一种高效的LSSR框架用于RSSR,该框架由一个包含配对30米Landsat 8与10米Sentinel 2影像的新型多模态数据集支持。LSSR基于冻结预训练的Stable Diffusion构建,通过交叉模态注意力整合辅助知识(数字高程模型、土地覆盖、月份)和合成孔径雷达引导,并利用适配器和定制的傅里叶NDVI损失进行增强,以平衡空间细节与光谱保真度。大量实验表明,LSSR显著改善了作物边界描绘与恢复能力,在峰值信噪比/结构相似性指数上达到32.63/0.84(RGB)和23.99/0.78(IR)的先进水平,并取得最低的NDVI均方误差(0.042),同时保持高效的推理速度(0.39秒/图像)。此外,LSSR能有效迁移至NASA Harmonized Landsat and Sentinel(HLS)超分辨率任务,相比Sentinel-2(F1:0.85)产生更可靠的作物分类结果(F1:0.86)。这些结果凸显了RSSR在推动精准农业方面的潜力。