The quest for determinism in machine learning has disproportionately focused on characterizing the impact of noise introduced by algorithmic design choices. In this work, we address a less well understood and studied question: how does our choice of tooling introduce randomness to deep neural network training. We conduct large scale experiments across different types of hardware, accelerators, state of art networks, and open-source datasets, to characterize how tooling choices contribute to the level of non-determinism in a system, the impact of said non-determinism, and the cost of eliminating different sources of noise. Our findings are surprising, and suggest that the impact of non-determinism in nuanced. While top-line metrics such as top-1 accuracy are not noticeably impacted, model performance on certain parts of the data distribution is far more sensitive to the introduction of randomness. Our results suggest that deterministic tooling is critical for AI safety. However, we also find that the cost of ensuring determinism varies dramatically between neural network architectures and hardware types, e.g., with overhead up to $746\%$, $241\%$, and $196\%$ on a spectrum of widely used GPU accelerator architectures, relative to non-deterministic training. The source code used in this paper is available at https://github.com/usyd-fsalab/NeuralNetworkRandomness.
翻译:在机器学习中,对确定确定论的追求过多地侧重于确定由算法设计选择所引入的噪音的影响。在这项工作中,我们讨论了一个认识和研究不足的问题:我们选择工具是如何将随机性引入深神经网络培训的。我们在不同类型的硬件、加速器、艺术网络状态和公开源数据集中进行大规模实验,以说明工具选择如何有助于一个系统中的非确定论的水平、上述非确定论的影响以及消除不同噪音源的成本。我们的调查结果令人吃惊,并表明非确定论在细微的微调中产生了影响。虽然我们选择工具是如何将随机性引入深神经网络培训。我们在不同类型的硬件硬件硬件硬件硬件中进行大规模实验,例如,我们选择工具性工具是如何促成在一个系统中的非确定论、加速器、先进器、先进器、先进器等顶级指标的模型在数据分配的某些部分上表现对于引入随机性意义更为敏感。我们的结果表明,确定论工具对于AI安全至关重要。然而,我们也发现确保确定论的成本在神经网络结构与硬件类型之间差别很大。例如,我们发现确保确定论的成本在纸质网络结构和硬件类型之间有很大差异,例如,在可广泛使用成本到可达746美元、241-Nemb-del-deisma-deal_在使用这一结构上使用。