Peer-to-Peer networks are designed to rely on resources of their own users. Therefore, resource management plays an important role in P2P protocols. Therefore, resource management plays an important role in P2P protocols. Early P2P networks did not use proper mechanisms to manage fairness. However, after seeing difficulties and rise of freeloaders in networks like Gnutella, the importance of providing fairness for users have become apparent. In this paper, we propose an incentive based security model which leads to a network infrastructure that lightens the work of Seeders and makes Leechers to contribute more. This method is able to prevent betrayals in Leecher-to-Leecher transactions and more importantly, helps Seeders to be treated more fairly. This is what other incentive methods such as Bittorrent are incapable of doing. Additionally, by getting help from cryptography and combining it with our method, it is also possible to achieve secure channels, immune to spying, next to a fair network. The simulation results clearly show that how our proposed approach can overcome free-riding issue. In addition, our findings revealed that our approach is able to provide an appropriate level of fairness for the users and can decrease the download time.


翻译:P2P 早期P2P 网络没有使用适当的机制来管理公平性。然而,在看到Gnutella等网络的困难和免费装载者崛起之后,为用户提供公平性的重要性变得很明显。在本文件中,我们提出了一个基于激励的安保模式,导致网络基础设施的简化,使种子人的工作更加轻松,使利彻人做出更多贡献。这种方法能够防止Leecher-Leecher交易中的背叛行为,更重要的是,帮助种子人得到更公平的对待。这是Bittorrent等其他激励方法所不能做的。此外,通过加密术的帮助和将它与我们的方法结合起来,还有可能在公平网络旁边找到安全渠道,对间谍的免疫。模拟结果清楚地表明,我们所提议的方法可以克服自由操纵问题。此外,我们的调查结果表明,我们的方法能够为用户提供适当的公平性,可以减少下载。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
7+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员