Based on recent advances in realistic language modeling (GPT-3) and cross-modal representations (CLIP), Gaud\'i was developed to help designers search for inspirational images using natural language. In the early stages of the design process, with the goal of eliciting a client's preferred creative direction, designers will typically create thematic collections of inspirational images called "mood-boards". Creating a mood-board involves sequential image searches which are currently performed using keywords or images. Gaud\'i transforms this process into a conversation where the user is gradually detailing the mood-board's theme. This representation allows our AI to generate new search queries from scratch, straight from a project briefing, following a theme hypothesized by GPT-3. Compared to previous computational approaches to mood-board creation, to the best of our knowledge, ours is the first attempt to represent mood-boards as the stories that designers tell when presenting a creative direction to a client.


翻译:根据现实语言建模(GPT-3)和跨模式展示(CLIP)的最新进展,Gaud\'i是用来帮助设计者使用自然语言搜索灵感图像的。在设计过程的早期阶段,设计者通常会制作灵感图像的专题集,称为“混合板 ” 。创建情绪板需要按顺序搜索图像,目前使用关键词或图像进行搜索。Gaud\i将这一过程转化为对话,用户正在逐渐详细描述情绪板的主题。这种演示使我们的AI能够直接从项目简报中从零开始产生新的搜索查询,直接根据GPT-3的虚构主题进行。与以前对创造情绪板的计算方法相比,我们最了解的是,我们第一次尝试将情绪板作为设计者在向客户展示创造性方向时所讲述的故事来表现。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
16+阅读 · 2021年1月27日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员