In neoadjuvant trials on early-stage breast cancer, patients are usually randomized into a control group and a treatment group with an additional target therapy. Early efficacy of the new regimen is assessed via the binary pathological complete response (pCR) and the eventual efficacy is assessed via a long-term clinical outcome such as survival. Although pCR is strongly associated with survival, it has not been confirmed as a surrogate endpoint. To fully understand its clinical implication, it is important to establish causal estimands such as the causal effect in survival for patients who would achieve pCR under the new regimen. Under the principal stratification framework, previous works focused on sensitivity analyses by varying model parameters in an imposed model on counterfactual outcomes. Under the same assumptions, we propose an approach to estimate those model parameters using empirical data and subsequently the causal estimand of interest. We also extend our approach to address censored outcome data. The proposed method is applied to a recent clinical trial and its performance is evaluated via simulation studies.


翻译:在关于早期乳腺癌的Negadjuvant试验中,病人通常被随机地分成一个控制组和一个有附加目标疗法的治疗组;通过二元病理完整反应(pCR)评估新疗法的早期效果,并通过长期临床结果(如生存)评估最终效果;虽然pcr与生存密切相关,但它没有被确认为替代端点;为了充分理解其临床影响,必须确定因果估计值,如在新疗法下将实现pCR的病人生存的因果影响;在主要分层框架下,以前的工作重点是通过对反事实结果的强制模型的不同模型参数进行敏感度分析;在同样的假设下,我们提出一种办法,利用经验数据来估计这些模型参数,随后是因果估计利息的因果。我们还扩大我们处理受审查的结果数据的方法。拟议方法适用于最近的临床试验,并通过模拟研究来评价其绩效。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员