In this paper, we exploit results obtained in an earlier study for the Laplace transform of the sojourn time $\Omega$ of an entire batch in the $M^{[X]}/M/1$ Processor Sharing (PS) queue in order to derive the asymptotic behavior of the complementary probability distribution function of this random variable, namely the behavior of $P(\Omega>x)$ when $x$ tends to infinity. We precisely show that up to a multiplying factor, the behavior of $P(\Omega>x)$ for large $x$ is of the same order of magnitude as $P(\omega>x)$, where $\omega$ is the sojourn time of an arbitrary job is the system. From a practical point of view, this means that if a system has to be dimensioned to guarantee processing time for jobs then the system can also guarantee processing times for entire batches by introducing a marginal amount of processing capacity.
翻译:在本文中,我们利用早先对Laplace的变换研究获得的结果,该变换在$M[X]}/M/1$处理器共享(PS)队列中整批美元(Omega$)的美元(Omega$),以得出该随机变量的互补概率分布功能的无症状行为,即美元(Omega>x)的行为,而美元往往是无穷无尽的。我们准确地显示,一个乘数因素,大额美元(P(Omegax)美元)的行为与美元(P(\omega>x)相同,因为美元是任意工作的逗留时间。从实际角度看,这意味着,如果一个系统必须具有维度来保证工作处理时间,那么这个系统也可以通过引入少量的处理能力来保证整个批次的处理时间。