Functional principal component analysis (FPCA) has played an important role in the development of functional time series analysis. This note investigates how FPCA can be used to analyze cointegrated functional time series and proposes a modification of FPCA as a novel statistical tool. Our modified FPCA not only provides an asymptotically more efficient estimator of the cointegrating vectors, but also leads to novel FPCA-based tests for examining essential properties of cointegrated functional time series.
翻译:----
功能性主成分分析(FPCA)在功能性时序分析的发展中发挥了重要的作用。本论文探讨了如何使用FPCA来分析协整函数时序,并提出了FPCA的修改版本作为一种新的统计工具。我们修改过的FPCA不仅提供了一个渐近更有效的协整向量估计器,而且还提出了基于FPCA的新型检验方法,可以检查协整函数时序的基本特性。