In emerging automotive cyber-physical systems (CPS), accurate environmental perception is critical to achieving safety and performance goals. Enabling robust perception for vehicles requires solving multiple complex problems related to sensor selection/ placement, object detection, and sensor fusion. Current methods address these problems in isolation, which leads to inefficient solutions. We present PASTA, a novel framework for global co-optimization of deep learning and sensing for dependable vehicle perception. Experimental results with the Audi-TT and BMW-Minicooper vehicles show how PASTA can find robust, vehicle-specific perception architecture solutions.
翻译:在新兴的汽车网络物理系统(CPS)中,准确的环境认知对于实现安全和性能目标至关重要。为对车辆进行稳健的认知,需要解决与传感器的选择/安置、物体探测和传感器聚合有关的多重复杂问题。目前的方法是孤立地解决这些问题,导致低效率的解决方案。我们提出了PASTA,这是全球深层次学习和感知最佳化的新框架,以可信赖的车辆感知。Audi-TT和BMW-Minicooper车辆的实验结果显示了PASTA如何找到稳健的、针对具体车辆的认知结构解决方案。