Low-dimensional models are ubiquitous in the bipedal robotics literature. On the one hand, are the simplified pendulum models selected to capture the center of mass dynamics. On the other hand, is the passive low-dimensional model induced by virtual constraints. In the first case, the low-dimensional model is valued for its physical insight and analytical tractability. In the second case, the low-dimensional model is integral to a rigorous analysis of the stability of walking gaits in the full-dimensional model of the robot. This paper brings these two approaches together, clarifying their commonalities and differences. In the process of doing so, we argue that angular momentum about the contact point is a better indicator of robot state than linear velocity. Concretely, we show that an approximate (pendulum and zero dynamics) model parameterized by angular momentum is more accurate on a physical robot (e.g., legs with mass) than is a related approximate model parameterized in terms of linear velocity. We implement an associated angular-momentum-based controller on Cassie, a 3D robot, and demonstrate high agility and robustness in experiments.
翻译:在两维机器人文献中, 低维模型是无处不在的。 一方面, 选择了简化的钟式模型, 以捕捉质量动态的中心。 另一方面, 由虚拟限制诱发的被动低维模型。 在第一种情况中, 低维模型因其物理洞察力和分析可感性而受到重视。 在第二种情况中, 低维模型是严格分析机器人全维模型中行走长部的稳定性所不可或缺的组成部分。 本文将这两种方法汇集在一起, 澄清它们的共性和差异。 在此过程中, 我们争论说, 接触点的角动量是机器人状态的更好指标, 而不是线性速度的。 具体地说, 我们表明, 以角动量为参数的低维度模型( 点和 零维度) 在物理机器人( 例如, 质量的腿) 上比以线性速度为参数的相关近似模型更为精确。 我们在3D机器人凯西上安装了一种相关的角动控制器, 并显示实验的高度敏性和坚韧性。