Taxi arrival time prediction is essential for building intelligent transportation systems. Traditional prediction methods mainly rely on extracting features from traffic maps, which cannot model complex situations and nonlinear spatial and temporal relationships. Therefore, we propose Multi-View Spatial-Temporal Model (MVSTM) to capture the mutual dependence of spatial-temporal relations and trajectory features. Specifically, we use graph2vec to model the spatial view, dual-channel temporal module to model the trajectory view, and structural embedding to model traffic semantics. Experiments on large-scale taxi trajectory data have shown that our approach is more effective than the existing novel methods. The source code can be found at https://github.com/775269512/SIGSPATIAL-2021-GISCUP-4th-Solution.
翻译:出租车抵达时间预测对于建设智能运输系统至关重要。传统预测方法主要依靠从交通图中提取特征,这些特征无法模拟复杂情况和非线性空间和时间关系。因此,我们提议多视空间-时际关系模型(MVSTM)来捕捉空间-时际关系和轨迹特征的相互依存性。具体地说,我们用图2vec来模拟空间视角,用双道时间模块来模拟轨迹视图,以及将结构嵌入交通语义模型。大规模出租车轨迹数据实验显示,我们的方法比现有的新方法更有效。源代码可以在https://github.com/7752569512/SIGSPATIAL-2021-GISCUP-4Solution上找到。