Formal verification has emerged as a promising method to ensure the safety and reliability of neural networks. However, many relevant properties, such as fairness or global robustness, pertain to the entire input space. If one applies verification techniques naively, the neural network is checked even on inputs that do not occur in the real world and have no meaning. To tackle this shortcoming, we propose the VeriFlow architecture as a flow-based density model tailored to allow any verification approach to restrict its search to some data distribution of interest. We argue that our architecture is particularly well suited for this purpose because of two major properties. First, we show that the transformation that is defined by our model is piecewise affine. Therefore, the model allows the usage of verifiers based on constraint solving with linear arithmetic. Second, upper density level sets (UDL) of the data distribution are definable via linear constraints in the latent space. As a consequence, representations of UDLs specified by a given probability are effectively computable in the latent space. This property allows for effective verification with a fine-grained, probabilistically interpretable control of how a-typical the inputs subject to verification are.


翻译:形式化验证已成为确保神经网络安全性与可靠性的一种有前景的方法。然而,许多相关属性(如公平性或全局鲁棒性)涉及整个输入空间。若直接应用验证技术,神经网络甚至会在现实世界中不存在且无意义的输入上进行检验。为解决这一缺陷,我们提出VeriFlow架构——一种基于流的密度模型,专为允许任何验证方法将其搜索范围限制在特定感兴趣的数据分布而设计。我们认为该架构特别适合此目的,主要基于两大特性:首先,我们证明该模型定义的变换是分段仿射的,因此支持基于线性算术约束求解的验证器使用;其次,数据分布的上密度水平集(UDL)可通过隐空间中的线性约束定义。这使得以给定概率指定的UDL表示在隐空间中可高效计算。该特性支持在验证过程中对输入的非典型程度进行细粒度、概率可解释的有效控制,从而实现高效验证。

0
下载
关闭预览

相关内容

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员