Natural Language Processing(NLP) demonstrates a great potential to support financial decision-making by analyzing the text from social media or news outlets. In this work, we build a platform to study the NLP-aided stock auto-trading algorithms systematically. In contrast to the previous work, our platform is characterized by three features: (1) We provide financial news for each specific stock. (2) We provide various stock factors for each stock. (3) We evaluate performance from more financial-relevant metrics. Such a design allows us to develop and evaluate NLP-aided stock auto-trading algorithms in a more realistic setting. In addition to designing an evaluation platform and dataset collection, we also made a technical contribution by proposing a system to automatically learn a good feature representation from various input information. The key to our algorithm is a method called semantic role labeling Pooling (SRLP), which leverages Semantic Role Labeling (SRL) to create a compact representation of each news paragraph. Based on SRLP, we further incorporate other stock factors to make the final prediction. In addition, we propose a self-supervised learning strategy based on SRLP to enhance the out-of-distribution generalization performance of our system. Through our experimental study, we show that the proposed method achieves better performance and outperforms all the baselines' annualized rate of return as well as the maximum drawdown of the CSI300 index and XIN9 index on real trading. Our Astock dataset and code are available at https://github.com/JinanZou/Astock.
翻译:自然语言处理(NLP)显示,通过分析社交媒体或新闻渠道提供的文本,我们有巨大的潜力支持金融决策。在这项工作中,我们建立了一个平台,系统地研究NLP辅助的股票自动交易算法。与以往的工作不同,我们的平台有三个特点:(1) 我们为每个具体股票提供财务信息。(2) 我们为每个股票提供不同的存货因素。(3) 我们从更金融相关的指标中评估每个股票的业绩。这种设计使我们能够在更现实的环境下开发和评价NLP辅助的股票自动交易算法。除了设计一个评价平台和数据集收集,我们还作出了技术贡献,建议建立一个系统,从各种投入信息中自动学习良好的特征代表。我们的算法的关键是称为标注的语义角色。(2) 我们利用Smantic 角色Lbeling(SRL)来创建每个新闻段落的缩略图。根据SRP,我们进一步将其他股票因素纳入到最后的预测中。此外,我们还提议了一个自动监督的系统,从各种投入中学习各种投入的信息信息。我们用SLLLLLLSA 展示了我们现有的业绩分析方法,从而实现我们现有的业绩分析方法。