This work studies distributionally robust evaluation of expected function values over temporal data. A set of alternative measures is characterized by the causal optimal transport. We prove the strong duality and recast the causality constraint as minimization over an infinite-dimensional test function space. We approximate test functions by neural networks and prove the sample complexity with Rademacher complexity. Moreover, when structural information is available to further restrict the ambiguity set, we prove the dual formulation and provide efficient optimization methods. Empirical analysis on realized volatility and stock indices demonstrate that our framework offers an attractive alternative to the classic optimal transport formulation.
翻译:这项工作研究对时间数据的预期功能值进行了可靠的分布评估。一套替代措施的特点是因果最佳运输。我们证明强大的双重性,并将因果关系限制重新描述为对无限的测试功能空间的最小化。我们将神经网络的测试功能相近,并证明Rademacher复杂的样本复杂性。此外,当有结构信息进一步限制设定的模糊性时,我们证明双重配方并提供有效的优化方法。关于已实现的波动和库存指数的经验分析表明,我们的框架为典型的最佳运输配方提供了有吸引力的替代物。