We present SPUX - a modular framework for Bayesian inference enabling uncertainty quantification and propagation in linear and nonlinear, deterministic and stochastic models, and supporting Bayesian model selection. SPUX can be coupled to any serial or parallel application written in any programming language, (e.g. including Python, R, Julia, C/C++, Fortran, Java, or a binary executable), scales effortlessly from serial runs on a personal computer to parallel high performance computing clusters, and aims to provide a platform particularly suited to support and foster reproducibility in computational science. We illustrate SPUX capabilities for a simple yet representative random walk model, describe how to couple different types of user applications, and showcase several readily available examples from environmental sciences. In addition to available state-of-the-art numerical inference algorithms including EMCEE, PMCMC (PF) and SABC, the open source nature of the SPUX framework and the explicit description of the hierarchical parallel SPUX executors should also greatly simplify the implementation and usage of other inference and optimization techniques.


翻译:我们提出了SPUX -- -- 一个模块框架,用于Bayesian推论,在线性和非线性、确定性和随机性模型中进行不确定性的量化和传播,并支持Bayesian模型选择;SPUX可与以任何编程语言(例如包括Python、R、Julia、C/C++、Fortran、Java或二进制执行)书写的任何序列或平行应用结合起来,从个人计算机上连续运行到平行高性能计算群集,规模不费力,目的是提供一个特别适合支持和促进计算科学再复制的平台;我们为简单但有代表性的随机行走模型演示SPUX能力,说明如何将不同类型的用户应用组合起来,并展示环境科学中的若干现成例子;除了现有的最新数字推算算法,包括EMCE、PMCM(PF)和SABC外,SPUX框架的开放源性质和分级平行SPUX执行器的清晰描述,还应大大简化其他推断和优化技术的实施和使用。

0
下载
关闭预览

相关内容

序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
NeurIPS2019机器学习顶会接受论文列表!
专知
28+阅读 · 2019年9月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
NeurIPS2019机器学习顶会接受论文列表!
专知
28+阅读 · 2019年9月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员