This work studies anomaly detection under differential privacy (DP) with Gaussian perturbation using both statistical and information-theoretic tools. In our setting, the adversary aims to modify the content of a statistical dataset by inserting additional data without being detected by using the DP guarantee to her own benefit. To this end, we characterize information-theoretic and statistical thresholds for the first and second-order statistics of the adversary's attack, which balances the privacy budget and the impact of the attack in order to remain undetected. Additionally, we introduce a new privacy metric based on Chernoff information for classifying adversaries under differential privacy as a stronger alternative to $(\epsilon, \delta)-$ and Kullback-Leibler DP for the Gaussian mechanism. Analytical results are supported by numerical evaluations.
翻译:这项工作利用统计和信息理论工具,对不同隐私(DP)下异常现象的检测进行了研究,使用统计和信息理论工具对Gaussian进行了扰动。在我们所处的环境中,对手的目的是通过在不为自身利益使用DP保证的情况下,插入额外数据,从而修改统计数据集的内容。为此,我们给敌国攻击第一和第二等级统计数据的信息理论和统计阈值定性,该阈值平衡了隐私预算和攻击的影响,以便不被发现。此外,我们还根据Cernoff信息引入了新的隐私指标,将敌国分为不同隐私之下,作为高斯机制的美元(\ epsilon,\ delta) 美元和 Kullback-Leiber DP的更强有力的替代品。分析结果得到数字评估的支持。