Biological machine learning is often bottlenecked by a lack of scaled data. One promising route to relieving data bottlenecks is through high throughput screens, which can experimentally test the activity of $10^6-10^{12}$ protein sequences in parallel. In this article, we introduce algorithms to optimize high throughput screens for data creation and model training. We focus on the large scale regime, where dataset sizes are limited by the cost of measurement and sequencing. We show that when active sequences are rare, we maximize information gain if we only collect positive examples of active sequences, i.e. $x$ with $y>0$. We can correct for the missing negative examples using a generative model of the library, producing a consistent and efficient estimate of the true $p(y | x)$. We demonstrate this approach in simulation and on a large scale screen of antibodies. Overall, co-design of experiments and inference lets us accelerate learning dramatically.


翻译:生物机器学习常因缺乏规模化数据而遭遇瓶颈。缓解数据瓶颈的一条可行途径是利用高通量筛选技术,该技术能够并行实验测试$10^6-10^{12}$条蛋白质序列的活性。本文提出用于优化高通量筛选以生成数据和训练模型的算法。我们聚焦于大规模筛选场景,其中数据集规模受限于测量与测序成本。研究表明,当活性序列较为稀少时,若仅收集活性序列的正样本(即满足$y>0$的$x$),可实现信息增益最大化。通过利用文库的生成模型对缺失的负样本进行校正,我们能够获得真实条件概率$p(y | x)$的一致且高效估计。该方法在仿真实验及大规模抗体筛选中均得到验证。总体而言,实验设计与推断过程的协同设计使我们能够显著加速学习进程。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员