The US Census Bureau will implement a new privacy-preserving disclosure avoidance system (DAS), which includes application of differential privacy, on the public-release 2020 census data. There are concerns that the DAS may bias small-area and demographically-stratified population counts, which play a critical role in public health research and policy, serving as denominators in estimation of disease/mortality rates. Employing three DAS demonstration products, we quantify errors attributable to reliance on DAS-protected denominators in standard small-area disease mapping models for characterizing health inequities. We conduct simulation studies and real data analyses of inequities in premature mortality at the census tract level in Massachusetts. Results show that overall patterns of inequity by racialized group and economic deprivation level are not compromised by the DAS. While early versions of DAS induce errors in mortality rate estimation that are larger for Black than for non-Hispanic white populations, this issue is ameliorated in newer DAS versions.
翻译:美国人口普查局将在2020年实施一种新的隐私保护披露规避系统(DAS),其中包括在公开发布的2020年人口普查数据上应用差分隐私。人们担心DAS可能会对小区域和人口分层人口计数产生偏见,这在公共卫生研究和政策中发挥了关键作用,成为估计疾病/死亡率的分母。通过使用三个DAS演示产品,我们量化了依靠DAS保护的分母在标准小区域疾病绘图模型中的错误,以描绘健康不平等。我们在马萨诸塞州进行模拟研究和真实数据分析,研究人员考察了普查区水平的年幼死亡率的不平等现象。结果表明,整体上,通过种族和经济贫困水平来衡量的不平等模式不会受DAS的影响。虽然早期版本的DAS对于黑人而言导致死亡率估计误差更大,但这个问题在较新的DAS版本中得到了改进。