Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.
翻译:集体情报是几个生物生物物种共有的基本特征。 集体情报是几个生物生物物种共有的一个基本特征。 它使得它们能够在我们星球上存在的各种环境条件下蓬勃发展。 从蚁群中的简单组织到人类群体中的复杂系统,集体情报对于解决复杂的生存任务至关重要。 众所周知,这类自然系统对结构的变化具有灵活性。 具体地说,当系统内各种物剂变化的能力或总数发生变化时,它们表现出高度的概括性。 我们把这个现象称为综合通用(CG)现象。 CG是自主系统的一个非常可取的特征,因为它可以提高其在广泛应用中的实用性和可部署性。 尽管最近关于CG具体方面的工作在复杂领域取得了令人印象深刻的成果,但在对新情况进行概括时,它们并没有提供业绩保障。 在这项工作中,我们阐明了CG对合作性多剂系统(MAS)的理论基础。 具体地说,我们研究了基础动态对制剂能力的直线性依赖的一般化界限,这可以被看作是成功特性的概括性特征,因为它可以在广泛的应用中增加其实用性和可部署性。 我们首先将Lischitz和随后武断地将大量地加强G多层次分析的多层次分析基础的实验室分析结果。最后,确保G对各种实验室分析的高级分析。