The Anonymisation Decision-making Framework (ADF) operationalizes the risk management of data exchange between organizations, referred to as "data environments". The second edition of ADF has increased its emphasis on modeling data flows, highlighting a potential new use of provenance information to support anonymisation decision-making. In this paper, we provide a use case that showcases this functionality more. Based on this use case, we identify how provenance information could be utilized within the ADF framework, and identify a currently un-met requirement which is the modeling of \textit{data environments}. We show how data environments can be implemented within the W3C PROV in four different ways. We analyze the costs and benefits of each approach, and consider another use case as a partial check for completeness. We then summarize our findings and suggest ways forward.
翻译:匿名决策框架(ADF)将各组织之间数据交换的风险管理(称为“数据环境”)付诸实施。ADF第二版更加强调数据流动的模型化,强调出处信息的潜在新用途,以支持匿名决策。在本文中,我们提供了一个更多展示这一功能的用法案例。根据这一用法案例,我们确定出出处信息如何在ADF框架内加以利用,并找出目前尚未满足的要求,即“数据环境”的模型化。我们展示了如何以四种不同方式在W3C PROV内实施数据环境。我们分析了每种方法的成本和收益,并将另一个使用案例视为部分的完整性检查。我们随后总结了我们的调查结果并提出前进的方法。