Intensive algorithmic efforts have been made to enable the rapid improvements of certificated robustness for complex ML models recently. However, current robustness certification methods are only able to certify under a limited perturbation radius. Given that existing pure data-driven statistical approaches have reached a bottleneck, in this paper, we propose to integrate statistical ML models with knowledge (expressed as logical rules) as a reasoning component using Markov logic networks (MLN, so as to further improve the overall certified robustness. This opens new research questions about certifying the robustness of such a paradigm, especially the reasoning component (e.g., MLN). As the first step towards understanding these questions, we first prove that the computational complexity of certifying the robustness of MLN is #P-hard. Guided by this hardness result, we then derive the first certified robustness bound for MLN by carefully analyzing different model regimes. Finally, we conduct extensive experiments on five datasets including both high-dimensional images and natural language texts, and we show that the certified robustness with knowledge-based logical reasoning indeed significantly outperforms that of the state-of-the-art.


翻译:最近,为了迅速改进复杂 ML 模型的认证可靠性,我们进行了密集的算法努力,以便迅速改进复杂 ML 模型的认证可靠性。然而,目前的稳健性认证方法只能在有限的扰动半径范围内进行验证。鉴于现有的纯数据驱动统计方法已经到了瓶颈,我们在本文件中提议将具有知识的统计 ML 模型(以逻辑规则的形式表述)作为推理组成部分,使用Markov 逻辑网络(MLN,以进一步提高总的认证可靠性。这为验证这种模式的可靠性,特别是推理成分(例如MLN)带来了新的研究问题。作为理解这些问题的第一步,我们首先证明证明,证明 MLN 的稳健性的计算复杂性是 #P 硬的。以这种硬性结果为指导,我们随后通过仔细分析不同的模型制度,得出了MLN 的首个经认证的稳健性。最后,我们对五个数据集进行了广泛的实验,包括高度图像和自然语言文本,并且我们表明,经认证的基于知识的逻辑推理的可靠性确实大大超出状态。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员