Two nonparametric methods are presented for forecasting functional time series (FTS). The FTS we observe is a curve at a discrete-time point. We address both one-step-ahead forecasting and dynamic updating. Dynamic updating is a forward prediction of the unobserved segment of the most recent curve. Among the two proposed methods, the first one is a straightforward adaptation to FTS of the $k$-nearest neighbors methods for univariate time series forecasting. The second one is based on a selection of curves, termed \emph{the curve envelope}, that aims to be representative in shape and magnitude of the most recent functional observation, either a whole curve or the observed part of a partially observed curve. In a similar fashion to $k$-nearest neighbors and other projection methods successfully used for time series forecasting, we ``project'' the $k$-nearest neighbors and the curves in the envelope for forecasting. In doing so, we keep track of the next period evolution of the curves. The methods are applied to simulated data, daily electricity demand, and NOx emissions and provide competitive results with and often superior to several benchmark predictions. The approach offers a model-free alternative to statistical methods based on FTS modeling to study the cyclic or seasonal behavior of many FTS.


翻译:为预测功能时间序列(FTS)提出了两种非参数方法。我们观察到的FTS是一个离散时间点的曲线。我们处理的是单步头预报和动态更新。动态更新是对最新曲线中未观测到的部分的前瞻性预测。在两种拟议方法中,第一种是直接适应FTS对美元最近邻的单向时间序列预测方法。第二种是选择曲线,称为\emph{曲线信封},目的是代表最新功能观测的形状和规模,要么是整个曲线,要么是部分观察到的曲线部分。动态更新是前方对最新曲线中未观测到的部分的预测。在两种拟议方法中,第一种是直接适应美元最近邻对FTS的FTS方法。我们这样做时,我们跟踪曲线的下一个时期演变情况。这种方法用于模拟数据、每日电力需求、NOx排放模型或部分观察到的观察到的部分曲线部分观察到的部分形状和规模。以类似的方式,即以美元最接近的邻居和其他预测方法成功地用于时间序列预测,我们“项目”最接近的邻居和信封中曲线曲线的曲线曲线曲线曲线曲线。我们追踪下下期演变的下一个阶段的演变的演变的演变的演变。这些方法被用于模拟数据、每日需求、可选替代模型模型,并提供了基于若干基准的统计方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
58+阅读 · 2020年11月16日
专知会员服务
159+阅读 · 2020年1月16日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
58+阅读 · 2020年11月16日
专知会员服务
159+阅读 · 2020年1月16日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员