Decentralized optimization over time-varying graphs has been increasingly common in modern machine learning with massive data stored on millions of mobile devices, such as in federated learning. This paper revisits the widely used accelerated gradient tracking and extends it to time-varying graphs. We prove the $O((\frac{\gamma}{1-\sigma_{\gamma}})^2\sqrt{\frac{L}{\epsilon}})$ and $O((\frac{\gamma}{1-\sigma_{\gamma}})^{1.5}\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon})$ complexities for the practical single loop accelerated gradient tracking over time-varying graphs when the problems are nonstrongly convex and strongly convex, respectively, where $\gamma$ and $\sigma_{\gamma}$ are two common constants charactering the network connectivity, $\epsilon$ is the desired precision, and $L$ and $\mu$ are the smoothness and strong convexity constants, respectively. Our complexities improve significantly over the ones of $O(\frac{1}{\epsilon^{5/7}})$ and $O((\frac{L}{\mu})^{5/7}\frac{1}{(1-\sigma)^{1.5}}\log\frac{1}{\epsilon})$, respectively, which were proved in the original literature only for static graphs, where $\frac{1}{1-\sigma}$ equals $\frac{\gamma}{1-\sigma_{\gamma}}$ when the network is time-invariant. When combining with a multiple consensus subroutine, the dependence on the network connectivity constants can be further improved to $O(1)$ and $O(\frac{\gamma}{1-\sigma_{\gamma}})$ for the computation and communication complexities, respectively. When the network is static, by employing the Chebyshev acceleration, our complexities exactly match the lower bounds without hiding any poly-logarithmic factor for both nonstrongly convex and strongly convex problems.


翻译:在现代机器学习中,对时间变化图的分散优化越来越常见, 大量数据储存在数百万个移动设备上, 比如在联盟学习中。 本文重新审视广泛使用的加速梯度跟踪, 并将其推广到时间变化图中。 当问题不是强烈的共性和强烈的共性时, 我们证明$2\qrt\frac{L\epsilón}2\qrt\frac} 美元和$O( (\\\ gamma_1-\ slima_ 1) 和$O (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\xlxxxxxxxxxx) 。 当我们网络连接以美元为基数的两个常见常数时, 美元是原始的精确度, 美元是原始的直数, 美元和美元的直系是平的平坦性 。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
142+阅读 · 2021年3月17日
专知会员服务
44+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月29日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员