Our predictions for particle physics processes are realized in a chain of complex simulators. They allow us to generate high-fidelty simulated data, but they are not well-suited for inference on the theory parameters with observed data. We explain why the likelihood function of high-dimensional LHC data cannot be explicitly evaluated, why this matters for data analysis, and reframe what the field has traditionally done to circumvent this problem. We then review new simulation-based inference methods that let us directly analyze high-dimensional data by combining machine learning techniques and information from the simulator. Initial studies indicate that these techniques have the potential to substantially improve the precision of LHC measurements. Finally, we discuss probabilistic programming, an emerging paradigm that lets us extend inference to the latent process of the simulator.
翻译:我们对粒子物理过程的预测是在一系列复杂的模拟器中实现的。 它们允许我们生成高纤维模拟数据, 但它们不适合用观察到的数据对理论参数进行推断。 我们解释了为什么无法对高维LHC数据的概率功能进行明确评估,为什么这在数据分析方面很重要, 并重新界定了这个领域为避免这一问题而历来所做的工作。 然后我们审查新的基于模拟的推断方法, 使我们能够通过将机器学习技术和模拟器提供的信息结合起来, 直接分析高维数据。 初步研究显示, 这些技术有可能大幅提高LHCC测量的精确度。 最后, 我们讨论了概率性编程, 这是一种新兴的范例, 使我们能够推导出模拟器的潜在过程。