The main focus of this paper is radius-based (supplier) clustering in the two-stage stochastic setting with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint. We also explore a number of variants where additional constraints are imposed on the first-stage decisions, specifically matroid and multi-knapsack constraints. Our eventual goal is to handle supplier problems in the most general distributional setting, where there is only black-box access to the underlying distribution. To that end, we follow a two-step approach. First, we develop algorithms for a restricted version of each problem, where all scenarios are explicitly provided; second, we employ a novel scenario-discarding variant of the standard Sample Average Approximation (SAA) method, which crucially exploits properties of the restricted-case algorithms. We note that the scenario-discarding modification to the SAA method is necessary in order to optimize over the radius.
翻译:本文的主要重点是以半径(供应商)为主,在有追索权的两阶段随机环境中分组(供应商),模型固有的随机性以预算限制的形式出现。我们还探索了对第一阶段决定施加额外限制的若干变式,具体而言,是类固醇和多孔纳波克限制。我们的最终目标是在最普遍的分布环境中处理供应商问题,只有黑盒才能进入基本分布。为此,我们采取两步方法。首先,我们为每个问题的一个限制性版本制定算法,其中明确提供了所有设想方案;第二,我们采用了标准样本平均吸附(SAA)方法的新的排除假想变式,该变式关键地利用了有限情况算法的特性。我们注意到,为了优化半径,有必要对SAA方法进行假想分级修改。