Hash functions map data of arbitrary length to data of predetermined length. Good hash functions are hard to predict, making them useful in cryptography. We are interested in the elliptic curve CGL hash function, which maps a bitstring to an elliptic curve by traversing an input-determined path through an isogeny graph. The nodes of an isogeny graph are elliptic curves, and the edges are special maps betwixt elliptic curves called isogenies. Knowing which hash values are most likely informs us of potential security weaknesses in the hash function. We use stochastic matrices to compute the expected probability distributions of the hash values. We generalize our experimental data into a theorem that completely describes all possible probability distributions of the CGL hash function. We use this theorem to evaluate the collision resistance of the CGL hash function and compare this to the collision resistance of an "ideal" hash function.
翻译:与预设长度数据任意长度的散列函数映射数据。 良好的散列函数很难预测, 使其在加密中有用 。 我们感兴趣的是椭圆曲线 CGL hash 函数, 它通过一个等离子图绘制输入确定路径, 绘制向椭圆曲线的位纹。 异形图形的节点是椭圆曲线, 边缘是特殊的地图, 叫做异形。 了解哪些散列值最有可能告诉我们散列函数中潜在的安全弱点。 我们使用随机矩阵来计算hash 值的预期概率分布。 我们将实验数据推广到一个标语中, 以完全描述 CGL hash 函数的所有可能的概率分布 。 我们使用此标语来评估 CGL 函数的碰撞阻力, 并将其与“ 理想” 函数的碰撞阻力作比较 。