Accurate low dimension chemical kinetic models for methane are an essential component in the design of efficient gas turbine combustors. Kinetic models coupled to computational fluid dynamics (CFD) provide quick and efficient ways to test the effect of operating conditions, fuel composition and combustor design compared to physical experiments. However, detailed chemical kinetic models are too computationally expensive for use in CFD. We propose a novel data orientated three-step methodology to produce compact models that replicate a target set of detailed model properties to a high fidelity. In the first step, a reduced kinetic model is obtained by removing all non-essential species from the detailed model containing 118 species using path flux analysis (PFA). It is then numerically optimised to replicate the detailed model's prediction in two rounds; First, to selected species (OH,H,CO and CH4) profiles in perfectly stirred reactor (PSR) simulations and then re-optimised to the detailed model's prediction of the laminar flame speed. This is implemented by a purposely developed Machine Learned Optimisation of Chemical Kinetics (MLOCK) algorithm. The MLOCK algorithm systematically perturbs all three Arrhenius parameters for selected reactions and assesses the suitability of the new parameters through an objective error function which quantifies the error in the compact model's calculation of the optimisation target. This strategy is demonstrated through the production of a 19 species and a 15 species compact model for methane/air combustion. Both compact models are validated across a range of 0D and 1D calculations across both lean and rich conditions and shows good agreement to the parent detailed mechanism. The 15 species model is shown to outperform the current state-of-art models in both accuracy and range of conditions the model is valid over.


翻译:甲烷的精确低维化学动能模型是设计高效气体涡轮涡轮涡轮梳理器的一个基本组成部分。 动能模型加上计算流动态(CFD)提供了快速有效的方法,可以比物理实验测试操作条件、燃料构成和组合设计的影响。 然而,详细的化学动能模型在计算上过于昂贵,无法用于气动模型。 我们提出一个新的数据导向三步方法,以生成紧凑模型,将一套详细模型特性复制成一个高忠诚度。 在第一步,通过使用路径流流分析(PFA)将所有非必要物种从包含118种的详细模型中去除,从而获得一个减少动能模型。 然后,在数字上优化地将详细模型模型的预测复制成一个效果模型。 在精密的反应堆(PSR)模拟中, 将模型的精确度模型的精确度模型的精确度模型和精度模型的精确度模型的精确度 。 通过精度模型的精度模型的精确度模型的精确度模型的精确度, 将精度的精确度模型的精确度模型的精确度模型的精确度模型的精确度 和精度的精确度的精确度的精确度模型的精确度的精确度的精确度的精确度的精确度的精确度模型的精确度的精确度的精确度的精确度的精确度 。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月20日
Arxiv
14+阅读 · 2020年12月17日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员