Bulk-bitwise processing-in-memory (PIM), an emerging computational paradigm utilizing memory arrays as computational units, has been shown to benefit database applications. This paper demonstrates how GROUP-BY and JOIN, database operations not supported by previous works, can be performed efficiently in bulk-bitwise PIM used for relational database analytical processing. We develop a gem5 simulator and show that our hardware modifications, on the Star Schema Benchmark and compared to previous works, improve, on average, execution time by $1.83\times$, energy by $4.31\times$, and the system's lifetime by $3.21\times$. We also achieved a speedup of $4.65\times$ over MonetDB, a modern state-of-the-art in-memory database.
翻译:使用内存阵列作为计算单位的新兴计算模式Bulk-bik-witter处理模拟器(PIM)已被证明有益于数据库应用,本文展示了Group-BY和JOIN(以前的工作没有支持的数据库操作)如何在用于关系数据库分析处理的散数-位PIM中有效运行。我们开发了一个宝石5模拟器,并表明,与以往的工程相比,我们在Star Schema基准上对硬件进行了改造,平均使执行时间提高了183美元,能源提高了4.31美元,系统寿命提高了3.21美元。我们还在现代最先进的模拟数据库MonetDB上实现了4.65美元的速度。