Tropical cyclone (TC) intensity forecasts are ultimately issued by human forecasters. The human in-the-loop pipeline requires that any forecasting guidance must be easily digestible by TC experts if it is to be adopted at operational centers like the National Hurricane Center. Our proposed framework leverages deep learning to provide forecasters with something neither end-to-end prediction models nor traditional intensity guidance does: a powerful tool for monitoring high-dimensional time series of key physically relevant predictors and the means to understand how the predictors relate to one another and to short-term intensity changes.
翻译:热带气旋(TC)强度预测最终由人类预报员发布。 人流中管道要求任何预测指导必须容易被技术合作专家消化,才能在像国家飓风中心这样的业务中心得到采纳。 我们提出的框架利用深层次的学习向预报员提供一些东西,既不是端到端预测模型,也不是传统的强度指导:一个强大的工具,用于监测具有物理相关性的关键预测员的高维时间序列,以及了解预报员如何相互联系和短期强度变化的手段。