We introduce a novel contrastive representation learning objective and a training scheme for clinical time series. Specifically, we project high dimensional EHR. data to a closed unit ball of low dimension, encoding geometric priors so that the origin represents an idealized perfect health state and the Euclidean norm is associated with the patient's mortality risk. Moreover, using septic patients as an example, we show how we could learn to associate the angle between two vectors with the different organ system failures, thereby, learning a compact representation which is indicative of both mortality risk and specific organ failure. We show how the learned embedding can be used for online patient monitoring, can supplement clinicians and improve performance of downstream machine learning tasks. This work was partially motivated from the desire and the need to introduce a systematic way of defining intermediate rewards for Reinforcement Learning in critical care medicine. Hence, we also show how such a design in terms of the learned embedding can result in qualitatively different policies and value distributions, as compared with using only terminal rewards.
翻译:我们引入了新的对比代表性学习目标和临床时间序列培训计划。 具体地说, 我们将高维 EHR. 数据投射到一个低维的封闭单元球中, 对几何前科进行编码, 以便源代码代表一个理想的完美健康状态, 而Euclidean 规范则与患者的死亡率风险相关。 此外, 我们以化粪病人为例, 展示我们如何学会将两种病媒之间的角度与不同器官系统故障联系起来, 从而学习一个显示死亡风险和特定器官故障的缩缩写。 我们展示了如何将学到的嵌入用于在线病人监测, 补充临床医生, 并改进下游机器学习任务的业绩。 这项工作部分是出于一种愿望, 也是为了引入一种系统的方法, 来界定关键护理医学中强化学习的中间奖励。 因此, 我们还展示了从学习嵌入的角度设计这样的设计如何导致质量上的差异政策和价值分配, 而不是仅仅使用最终的奖励。