We look at constructions of aperiodic SFTs on fundamental groups of graph of groups. In particular, we prove that all generalized Baumslag-Solitar groups (GBS) admit a strongly aperiodic SFT. Our proof is based on first a structural theorem by Whyte and second two constructions of strongly aperiodic SFTs on $\mathbb{F}_n\times \mathbb{Z}$ and $BS(m,n)$ of our own. Our two constructions rely on a path-folding technique that lifts an SFT on $\mathbb{Z}^2$ inside an SFT on $\mathbb{F}_n\times \mathbb{Z}$ or an SFT on the hyperbolic plane inside an SFT on $BS(m,n)$. In the case of $ \mathbb{F}_n\times \mathbb{Z}$ the path folding technique also preserves minimality, so that we get minimal strongly aperiodic SFTs on unimodular GBS.
翻译:我们用基本组别图来查看定期SFT的构造。 特别是, 我们证明所有通用的Baumslag- Solitar集团( GBS) 都强烈地接受定期SFT。 我们的证据是基于第一个由White 组成的结构理论, 以及第二个由美元\ mathbb{F\\\\\ n\ time\ mathb* 美元和 美元BS( m, n) 美元组成的定期SFT 。 我们的两部建筑都依赖于一个路径翻转技术, 将SFT用$\ mathbb* 2美元在SFT内举起 $\ mathb{ F\\\\\\\\\\ tme\\\\\ tim\\\\\\\\\\ tme 美元, 或 SFFT在SFT的双曲平面飞机上以$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\