This paper describes the pragmatic design and construction of geometric fabrics for shaping a robot's task-independent nominal behavior, capturing behavioral components such as obstacle avoidance, joint limit avoidance, redundancy resolution, global navigation heuristics, etc. Geometric fabrics constitute the most concrete incarnation of a new mathematical formulation for reactive behavior called optimization fabrics. Fabrics generalize recent work on Riemannian Motion Policies (RMPs); they add provable stability guarantees and improve design consistency while promoting the intuitive acceleration-based principles of modular design that make RMPs successful. We describe a suite of mathematical modeling tools that practitioners can employ in practice and demonstrate both how to mitigate system complexity by constructing behaviors layer-wise and how to employ these tools to design robust, strongly-generalizing, policies that solve practical problems one would expect to find in industry applications. Our system exhibits intelligent global navigation behaviors expressed entirely as provably stable fabrics with zero planning or state machine governance.
翻译:本文描述了设计一个机器人独立任务的名义行为、捕捉避免障碍、联合避免限制、冗余分辨率、全球导航超常性等行为组成部分的实用设计和几何结构构造。 几何结构是反应性行为的新数学配方的最具体化的化身,称为优化布料。 构思概括了最近关于里曼尼运动政策的工作;增加了可证实的稳定保障,提高了设计一致性,同时促进了模块设计中直观的加速原则,使RMP获得成功。 我们描述了实践者可以使用的一系列数学模型工具,并展示了如何通过构建行为层来减轻系统复杂性,以及如何利用这些工具设计强有力、高度概括化的政策,解决人们预期在工业应用中会发现的实际问题。我们的系统展示了智能的全球导航行为,其表现为零规划或国家机器治理的完全稳定结构。