We developed a flexible parallel algorithm for graph summarization based on vertex-centric programming and parameterized message passing. The base algorithm supports infinitely many structural graph summary models defined in a formal language. An extension of the parallel base algorithm allows incremental graph summarization. In this paper, we prove that the incremental algorithm is correct and show that updates are performed in time $\mathcal{O}(\Delta \cdot d^k)$, where $\Delta$ is the number of additions, deletions, and modifications to the input graph, $d$ the maximum degree, and $k$ is the maximum distance in the subgraphs considered. Although the iterative algorithm supports values of $k>1$, it requires nested data structures for the message passing that are memory-inefficient. Thus, we extended the base summarization algorithm by a hash-based messaging mechanism to support a scalable iterative computation of graph summarizations based on $k$-bisimulation for arbitrary $k$. We empirically evaluate the performance of our algorithms using benchmark and real-world datasets. The incremental algorithm almost always outperforms the batch computation. We observe in our experiments that the incremental algorithm is faster even in cases when $50\%$ of the graph database changes from one version to the next. The incremental computation requires a three-layered hash index, which has a low memory overhead of only $8\%$ ($\pm 1\%$). Finally, the incremental summarization algorithm outperforms the batch algorithm even with fewer cores. The iterative parallel $k$-bisimulation algorithm computes summaries on graphs with over $10$M edges within seconds. We show that the algorithm processes graphs of $100+\,$M edges within a few minutes while having a moderate memory consumption of $<150$ GB. For the largest BSBM1B dataset with 1 billion edges, it computes $k=10$ bisimulation in under an hour.


翻译:我们开发了一个基于顶端偏心编程和参数化消息传递的图形总和的灵活平行算法。 基数算法支持了在正式语言中定义的许多结构图总模。 平行基算的扩展允许递增图形总和化。 在本文中, 我们证明递增算法是正确的, 并显示更新是在时间里进行 $\ mathcal{O} (\ Delta\ cdok dik), 其中$\ Delta$ 是增量、 删除和修改输入图的数量, $50 最大度, $美元是所考虑的子数组中的最大距离。 虽然迭代算法支持了 $>1 的递增基数计算法, 并且显示的是基于 hash的电文机制, 支持基于 $1 美元 的平流速计算。 我们用基准值和真实值的数学计算方法评估了我们的算法的绩效, 也就是: 以一个不断递增量的运算法, 当我们内部的运算法中, 我们的递增量的运算法在1 中, 一个不断的递增的运算中, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员