The core of the computer business now offers subscription-based on-demand services with the help of cloud computing. We may now share resources among multiple users by using virtualization, which creates a virtual instance of a computer system running in an abstracted hardware layer. It provides infinite computing capabilities through its massive cloud datacenters, in contrast to early distributed computing models, and has been incredibly popular in recent years because to its continually growing infrastructure, user base, and hosted data volume. This article suggests a conceptual framework for a workload management paradigm in cloud settings that is both safe and performance-efficient. A resource management unit is used in this paradigm for energy and performing virtual machine allocation with efficiency, assuring the safe execution of users' applications, and protecting against data breaches brought on by unauthorised virtual machine access real-time. A secure virtual machine management unit controls the resource management unit and is created to produce data on unlawful access or intercommunication. Additionally, a workload analyzer unit works simultaneously to estimate resource consumption data to help the resource management unit be more effective during virtual machine allocation. The suggested model functions differently to effectively serve the same objective, including data encryption and decryption prior to transfer, usage of trust access mechanism to prevent unauthorised access to virtual machines, which creates extra computational cost overhead.


翻译:计算机业务的核心现在在云计算的帮助下提供基于订阅的需求服务。我们现在可以通过虚拟化在多个用户之间共享资源,这种虚拟化可以创造在抽象的硬件层运行的计算机系统的虚拟实例。它通过其庞大的云层数据中心提供无限的计算能力,这与早期分布式计算模型形成对照,近年来由于计算机基础设施、用户基础和主机数据量不断增长,这种核心已经非常受欢迎。本文章为云层环境中的工作量管理模式提出了一个概念框架,既安全又高效。在这个模式中,资源管理单位被用于能源和高效执行虚拟机器分配,确保用户应用程序的安全执行,并保护人们免受未经授权的虚拟机器实时访问带来的数据破坏。一个安全的虚拟机器管理单位控制资源管理单位,并创建用于制作非法访问或互通的数据。此外,工作量分析单位同时工作,估算资源消耗数据,以帮助资源管理单位在虚拟机器分配期间更加有效。建议的模型功能不同,有效地服务同一目标,包括数据加密和解密,在转让之前确保用户应用程序的安全,保护用户免遭未经授权的虚拟机器访问而导致的数据破坏。一个安全的虚拟机管理单位控制了资源管理单位,并创建了虚拟机的进入,从而避免了虚拟进入虚拟的进入机的进入,从而避免了虚拟的进入了虚拟机的进入。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2023年1月5日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员