Information-theoretic measures have been widely adopted in the design of features for learning and decision problems. Inspired by this, we look at the relationship between i) a weak form of information loss in the Shannon sense and ii) the operation loss in the minimum probability of error (MPE) sense when considering a family of lossy continuous representations (features) of a continuous observation. We present several results that shed light on this interplay. Our first result offers a lower bound on a weak form of information loss as a function of its respective operation loss when adopting a discrete lossy representation (quantization) instead of the original raw observation. From this, our main result shows that a specific form of vanishing information loss (a weak notion of asymptotic informational sufficiency) implies a vanishing MPE loss (or asymptotic operational sufficiency) when considering a general family of lossy continuous representations. Our theoretical findings support the observation that the selection of feature representations that attempt to capture informational sufficiency is appropriate for learning, but this selection is a rather conservative design principle if the intended goal is achieving MPE in classification. Supporting this last point, and under some structural conditions, we show that it is possible to adopt an alternative notion of informational sufficiency (strictly weaker than pure sufficiency in the mutual information sense) to achieve operational sufficiency in learning.


翻译:在设计学习和决定问题的特点时,广泛采取了信息理论措施,因此,我们审视了以下两种情况之间的关系:一)香农意义上的信息损失形式薄弱,香农意义上的信息损失形式薄弱;二)在考虑连续观察中损失连续陈述(功能)的家庭时,行动损失最小概率(MPE)为连续观察中损失的最小概率(MPE),我们提出了一些结果,揭示了这种相互作用。我们的第一种结果是,在采用离散损失代表(量化)而不是原始观察时,将信息损失作为各自业务损失的一个函数,对薄弱的信息损失形式限制较低。我们的主要结果显示,在考虑持续观察中损失连续陈述这一家庭时,行动损失的具体形式消失(或功能不足)意味着消失MPE损失(或功能不足)。我们的理论结论支持这样一种看法,即选择试图获取信息充足性特征的特征表示适合学习,但是如果预期目标正在实现MPE分类,这种选择是一种相当保守的设计原则。我们的主要结果表明,一种消失信息损失的具体形式(即信息充足性概念弱化)意味着,在某种结构意义上,我们从某种层次上看,从一个较可靠的信息充分性概念之下,我们从某种了解了一种较差的判断,从某种了解。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Antipatterns in Software Classification Taxonomies
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员