Event cameras are bioinspired sensors with reaction times in the order of microseconds. This property makes them appealing for use in highly-dynamic computer vision applications. In this work,we explore the limits of this sensing technology and present an ultra-fast tracking algorithm able to estimate six-degree-of-freedom motion with dynamics over 25.8 g, at a throughput of 10 kHz,processing over a million events per second. Our method is capable of tracking either camera motion or the motion of an object in front of it, using an error-state Kalman filter formulated in a Lie-theoretic sense. The method includes a robust mechanism for the matching of events with projected line segments with very fast outlier rejection. Meticulous treatment of sparse matrices is applied to achieve real-time performance. Different motion models of varying complexity are considered for the sake of comparison and performance analysis
翻译:事件摄像头是按微秒顺序排列的反应时间的生物感应器。 此属性使得它们能够吸引用于高动态计算机视觉应用。 在这项工作中, 我们探索了这种遥感技术的极限, 并提出了一个超快的跟踪算法, 能够以10千赫兹的速率对动态超过25.8克的六度自由运动进行估计, 每秒处理100万次事件。 我们的方法能够跟踪镜头运动或一个物体在它面前的动作, 使用一个错误状态的卡尔曼过滤器, 以测谎为根据。 方法包括一个强大的机制, 将事件与预测的线段相匹配, 并快速断开。 对稀有的矩阵进行中度处理, 以实现实时性能。 为了比较和性能分析, 考虑不同复杂的运动模型。